Интерференция световых волн Строение ядра. Радиоактивность

Графически электростатическое поле изображают с помощью линий напряженности — линий, касательные к которым в каждой точке совпадают с направлением вектора Е. Линиям напряженности приписывается направление, совпадающее с направлением вектора напряженности. Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Для однородного поля (когда вектор напряженности в любой точке постоянен по величине и направлению) линии напряженности параллельны вектору напряженности

Электромагнитные волны.

Из уравнений Максвелла следует, что если возбудить с помощью зарядов переменное электрическое или магнитное поле, в окружающем пространстве возникнет последовательность взаимных превращений электрического и магнитного полей, распространяющихся в виде электромагнитной волны. Для однородной нейтральной (ρ=0) и непроводящей () среды с постоянными проницаемостями ε и μ, волновое уравнение, описывающее электромагнитную волну, распадается на два независимых векторных уравнения соответственно для электрического  и магнитного полей:

 , .

Фазовая скорость электромагнитной волны v определяется по формуле: Анализ процессов в параметрическом колебательном контуре на основе уравнения Матье. В предыдущем параграфе мы рассмотрели энергетический способ исследования параметрических систем. Данный L метод, позволил вывести формулы, определяющие значение коэффициента модуляции, при котором в колебательной системе возможно либо усиление колебаний, либо стационарный режим, либо нарастающие колебания.

.

Для вакуума (ε = μ = 1) по этой формуле получается:

.

Таким образом, в вакууме фазовая скорость электромагнитной  волны совпадает со скоростью света. В среде с постоянными проницаемостями ε и μ

Рассмотрим плоскую электромагнитную волну, распространяющуюся вдоль оси х, перпендикулярной к волновым поверхностям. В этом случае, очевидно, поля  и не зависят от координат y и z. Соответствующие уравнения Максвелла, записанные для этого случая, приводят к следующим скалярным волновым уравнениям:

 , .

Простейшими решениями этих уравнений являются функции

Ey(x,t) = Em cos(ωt - kx);

Hz(x,t) = Hm cos(ωt - kx),

совместность которых обеспечивается условиями, вытекающими из уравнений Максвелла

kEm = μμ0ωHm ,

εε0ωEm = kHm .

Отсюда следует, что колебания электрического и магнитного векторов в электромагнитной волне происходят с одинаковой фазой, а амплитуды этих векторов связаны между собой соотношением:

.

Из последней формулы вытекает, в частности, что отношение Em к Hm для электромагнитной волны, распространяющейся в вакууме:

.

В векторном виде уравнения плоской электромагнитной волны записываются как:

 ,

.

На рис.17.2 показана мгновенная картина плоской электромагнитной волны в данный момент времени t.

Рис.17.2. Структура плоской электромагнитной волны.

Как видно из рис.17.2, векторы  и  (на рисунке ) образуют с направлением распространения волны   правовинтовую систему, то есть электромагнитная волна является поперечной. В фиксированной точке пространства электромагнитное поле в волне изменяется по гармоническому закону.

В истории развития физики имела место борьба двух теорий: дальнодействия и близкодействия. В теории дальнодействия принимается, что электрические явления определяются мгновенным взаимодействием зарядов на любых расстояниях. Согласно теории близкодействия, все электрические явления определяются изменениями полей зарядов, причем эти изменения распространяются в пространстве от точки к точке с конечной скоростью. Применительно к электростатическим полям обе теории дают одинаковые результаты, хорошо согласующиеся с опытом. Переход же к явлениям, обусловленным движением электрических зарядов, приводит к несостоятельности теории дальнодействия, поэтому современной теорией взаимодействия заряженных частиц является теория близкодействия.
Основы электронной теории магнетизма