Интерференция световых волн Строение ядра. Радиоактивность

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники. Проводники — тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы) — перенос в них зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот) — перенос в них зарядов (положительных и отрицательных ионов) ведет к химическим изменениям. Диэлектрики (например, стекло, пластмассы) — тела, в которых практически отсутствуют свободные заряды.

Основы электронной теории магнетизма.

Магнитные моменты атомов и молекул.

Атомы всех веществ состоят из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов. Каждый движущийся по орбите электрон образует круговой ток силы , – частота обращения электрона вокруг ядра. Поскольку заряд электрона отрицательный, направление тока и направление движения электрона противоположны. Магнитный момент создаваемого электроном тока по величине равен:

,

где– угловая скорость; r – радиус орбиты электрона.

Магнитный момент создается движением электрона по орбите, вследствие чего он получил название орбитального магнитного момента электрона. Вектор образует с вектором орбитальной скорости электрона  левовинтовую систему.

Движущийся по орбите электрон обладает моментом импульса, называемым орбитальным механическим моментом электрона:

.

Вектор образует с вектором скорости правовинтовую систему. Следовательно, направления векторов и противоположны.

Отношение магнитного момента элементарной частицы к ее механическому моменту называется гиромагнитным отношением Г. Для орбитального движения электрона это отношение составляет:

.

Позже, в опытах Эйнштейна-де Гааза (Einstein A., 1879-1955; Haas A., 1884-1941) и Барнетта (Barnett S., 1873-1956), выяснилось, что наряду с орбитальными моментами, электрон обладает также собственным механическим моментом (спином) и собственным магнитным моментом , для которых гиромагнитное отношение оказалось в два раза большим:

.

Магнитный момент атома слагается из орбитальных и собственных магнитных моментов входящих в его состав электронов, а также магнитного момента ядра атома. Магнитный момент ядра, обусловленный магнитными моментами входящих в состав ядра протонов и нейтронов, значительно меньше электронных магнитных моментов, поэтому при рассмотрении многих вопросов им можно пренебречь. Таким образом, полный магнитный момент атома равен векторной сумме магнитных моментов всех его электронов.

Магнитный момент молекулы также можно считать равным сумме магнитных моментов входящих в ее состав электронов.

Природа диамагнетизма. Теорема Лармора. Если атом поместить во внешнее магнитное поле с индукцией (рис.12.1), то на электрон, движущийся по орбите, будет действовать вращательный момент сил , стремящийся установить магнитный момент электрона по направлению силовых линий магнитного поля (механического момента  - против поля).

Парамагнетизм. Закон Кюри. Теория Ланжевена. Если магнитный момент атомов  отличен от нуля, то вещество оказывается парамагнитным. Внешнее магнитное поле стремится установить магнитные моменты атомов вдоль  в то время, как тепловое движение – разбросать их равномерно по всем направлениям. В результате устанавливается некоторая преимущественная ориентация магнитных моментов атомов вдоль поля. Пьер Кюри (Curie P., 1859-1906) экспериментально установил, что магнитная восприимчивость парамагнетика зависит от температуры согласно закону (закон Кюри): , где С – постоянная Кюри, зависящая от рода вещества.

Основы электродинамики Движение заряженных частиц в постоянных электрическом и магнитном полях. Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца. Мы уже знаем, что на проводник с током, помещенный в магнитное поле, действует сила Ампера. Но ток в проводнике – есть направленное движение зарядов. Отсюда напрашивается вывод, что сила, действующая на проводник с током в магнитном поле, обусловлена действием сил на отдельные движущиеся заряды, от которых это действие передается уже самому проводнику. Этот вывод подтверждается, в частности, еще и тем, что пучок свободно летящих заряженных частиц отклоняется магнитным полем.

Движение заряженной частицы в однородном постоянном магнитном поле

Практические применения силы Лоренца. Эффект Холла

Закон Кулона Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материальной точки, является физической абстракцией.


Основы электронной теории магнетизма