Интерференция световых волн Строение ядра. Радиоактивность

В ньютоновской механике третий закон Ньютона выполняется для любых взаимодействующих тел независимо от природы взаимодействия и от того, находятся ли тела в непосред­ственном контакте или взаимодействуют на расстоянии с помощью грави­тационных или электромагнитных сил. Однако выполнение этого закона для дальнодействующих сил означает мгновенную передачу информации об изменении положения тел. Само понятие дальнодействия противоречит постулатам теории относительности, запрещающим передачу информациисо скоростью, превышающей скорость света. Современная физика отказалась от дальнодействия, введя нового участника взаимодействия — материальное силовое поле (электрическое, гравитационное и др.), заполняющее все пространство

Таким образом, если мы знаем механические и электромагнитные свойства используемого электромагнитным полем физического пространства, а также его геометрию, мы можем всегда рассчитать мощности, возникающие при протекании токов в этом пространстве.

Это даёт нам ещё на стадии проектирования мощный аппарат для моделирования электромагнитных процессов, протекающих в будущем электротехническом устройстве.

Любой электрический прибор можно представить как пространство, в котором будет происходить задаваемое разработчиком изменение электромагнитного поля.

Для моделирования такого устройства достаточно представить это пространство в виде множества точек, которые называются узлами, и приписать им соответствующий узловой потенциал. Между узлами с разным потенциалом существует напряжение U , которое приводит к возникновению тока I между этими узлами. Путь для тока I между узлами называют ветвью. На этом пути электромагнитная энергия превращается в механическую (тепловую), электрическую и магнитную энергии в соответствии с коэффициентами R, С, L. Можно представить их в виде отдельных элементов, которые будут замещать нам в модельном представлении реальные процессы преобразования энергии. Поэтому модель электротехнического устройства будет выглядеть в виде структурной схемы замещения, состоящей из узлов, соединённых ветвями с соответствующими условно-графическими обозначениями (УГО) элементов R, С, L. Степень приближения модели к реальности определяется количеством узлов и ветвей в схеме, а также учётом всех превращений энергии этими элементами. Необходимо постоянно помнить, что два узла всегда соединяются всеми 3 элементами. Для упрощения моделей очень часто между узлами оставляют по одному элементу, который больше других участвует в местном превращении электромагнитной энергии. Но это может привести к серьёзным ошибкам, так как при разных условиях роль этих элементов может существенно поменяться. Основные понятия квантовой механики Волновая функция и ее физическая интерпретация (плотность вероятности, нормировка волновой функции, неоднозначность волновой функции в виде фазового множителя )

Если напряжение U и ток I являются переменными величинами, то величины элементов R, С, L определяются устройством электроприбора - какие материалы используются и как конструктивно они расположены, т.е. они подвластны разработчику. Подбор этих элементов позволяет создать необходимое по задаваемым условиям потенциальное и динамическое распределение электромагнитного поля.

У электронщиков всего 3 элемента и все они используются по назначению.

За что им дают патенты? (И.И.Петров, выпускник МИФИ).

Условно-графические обозначения элементов в общем виде:

Если значения элементов R, С, L , то есть электромагнитные свойства и геометрические параметры пространства между точками 1 и 2, не меняются в зависимости от напряжения и тока, то такие элементы называются линейными , и их можно вынести за дифференциал или интеграл. В другом случае эти элементы будут нелинейными.

Своё название они получили из-за вида вольтамперной характеристики линейного и нелинейного сопротивлений. Это видно из сравнения вольтамперных характеристик линейного сопротивления 10 Ом и искрового промежутка, в котором развивается дуговой разряд.

Природа подарила нам два типа материалов с существенно отличными значениями удельного сопротивления – электрики и диэлектрики (по образному определению

М. Фарадея). В настоящее время электрики чаще всего называют проводниками, по их функции пропускать электрический ток практически без потерь. У них очень малое значение r , которое для меди составляет всего 0,0172 Ом.м.

Диэлектрики оставили своё название у материаловедов, а в электротехнике их больше знают как изоляторы, по выполняемой ими функции практически не пропускать электрический ток ввиду очень большого значения r, которое для воздуха >1014 Ом.м.

Третий материал – полупроводник с изменяемой величиной r, получил широкое распространение в качестве материала для производства нелинейных сопротивлений.

Можно также выделить материалы с разной диэлектрической проницаемостью:

неполярные (e ~ 2 – 3), полярные (e ~ 10 -100) и ферроэлектрики (e ~ 1000).

Среди магнитных материалов известны:

диамагнетики (m < -1), парамагнетики (m >1) и ферромагнетики (m >100). 

Из этих материалов можно изготавливать фабричным способом различные компоненты с номинальными характеристиками соответствующих элементов. Данные устройства получили название резисторов, конденсаторов, индукторов (катушек индуктивности), полупроводниковых приборов и т.п..

Если в пространство, окружающее электрический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружающем электрические заряды, существует силовое поле. Согласно представлениям современной физики, поле реально существует и наряду с веществом является одной из форм существования материи, посредством которого осуществляются определенные взаимодействия между макроскопическими телами или частицами, входящими в состав вещества. В данном случае говорят об электрическом поле — поле, посредством которого взаимодействуют электрические заряды. Мы будем рассматривать электрические поля, которые создаются неподвижными электрическими зарядами и называются электростатическими.
Основы электронной теории магнетизма