Тройной интеграл в цилиндрических координатах
Примеры решения задач к контрольной работе Закон Ома для однородного участка цепи

Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягивает легкие предметы. Английский врач Джильберт (конец XVI в.) назвал тела, способные после натирания притягивать легкие предметы, наэлектризованными. Сейчас мы говорим, что тела при этом приобретают электрические заряды. Несмотря на огромное разнообразие веществ в природе, существует только два типа электрических зарядов: заряды, подобные возникающим на стекле, потертом о кожу (их назвали положительными), и заряды, подобные возникающим на эбоните, потертом о мех (их назвали отрицательными), одноименные заряды друг от друга отталкиваются, разноименные — притягиваются.

Кинематика специальной теории относительности:

Постулаты Эйнштейна.

Никакие эксперименты, проводимые в данной лабораторной инерциальной системе не позволяют различить находится эта система в состоянии покоя или равномерного и прямолинейного движения. Физические процессы во всех инерциальных системах протекают одинаково и не зависят от выбора системы отсчета, т.е. инвариантны по отношению к преобразованиям из одной инерциальной системы в другую.

 Скорость света с в вакууме не зависит от движения источника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме предельная скорость в природе. Скорость любых частиц, а также скорость распространения любых взаимодействий не может быть больше с.

Замедление времени. Пусть в системе, движущейся с собственной скоростью относительно наблюдателя, измерен промежуток времени  (собственное время). В лабораторной системе, где наблюдатель неподвижен (в системе К), часы покажут при этом промежуток времени . Оба значения связаны соотношением

 , (11)

где .

Из этого следует движущиеся часы идут медленнее неподвижных, таким образом, в движущихся системах К' время замедляется по отношению к неподвижной системе К.

Сокращение длины: Пусть в системе К' измерена длина l0 тела вдоль направления скорости (собственная длина). В лабораторной системе К, где наблюдатель неподвижен, измеренная длина тела равна l. Оба значения связаны соотношением

  (12)

т.е. длина тела сокращается в направлении движения. В направлении перпендикулярном движению, сокращение длины не происходит.

Релятивистский закон сложения скоростей: Пусть тело движется со скоростью ' относительно некоторой системы координат . В свою очередь, эта система К' движется со скоростью U относительно неподвижной системы К так, что обе скорости лежат на одной прямой. Результирующая скорость тела относительно наблюдателя (системы К):

 . (13)

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Автомобиль проехал первую половину пути со скоростью = 40 км/ч, вторую – со скоростью = 60 км/ч. Найти среднюю скорость на всем пройденном пути. Анализ и решение: не следует поддаваться первому впечатлению и считать, что средняя  в данном случае равна:

Это неверно! Обратимся к определению средней скорости. Средняя скорость есть отношение всего пройденного пути к промежутку времени, за которое этот путь пройден, т.е.

 , (1)

где S – весь пройденный путь.

где ,  - время прохождения первой и второй половины пути соответственно.

Из формулы (1) видно, что S и t неизвестны. Используя данные, по условию задачи, выразим  и  через значения  и  и подставим в формулу (1):

  (2)  (3)

  (4)

Проверяем размерность формулы (4):

Подставим численные значения:

.

Этот результат может показаться неожиданным, т.к. в курсе физики при выводе формулы пути при равноускоренном движении используется формула

,

согласно которой средняя скорость должна была бы равняться 50 км/ч. Следует иметь в виду, что эта формула для  пригодна только в случае равноускоренного движения.

Итак: при решении задач не гадай, а решай, используя только те формулы, которые справедливы для данного вида движения.

Ответ: =48 км/ч.

Пример. Автомобиль проходит первую треть пути со скоростью , а оставшуюся часть пути – со скоростью = 50 км/ч. Определить скорость на первом участке пути, если средняя скорость на всем пути  = 37,5 км/ч. Анализ и решение: Обозначим весь путь через S, время, затраченное на прохождение первого участка пути – через t1 время движения на втором участке пути – через t2.

Тело, падающее без начальной скорости с некоторой высоты h1, прошло последние h2 = 30 м за время t2 = 0,5 с. Найти высоту падения hl и время падения t1. Сопротивлением воздуха пренебречь.

По графику зависимости координаты х от времени t, изображенной на рисунке построить графики зависимости  и

С балкона вертикально вверх брошен мячик с начальной скоростью υ0 = 8 м/с. Через 2 с мячик упал на зем­лю. Определить высоту балкона над землей. Принять g = 10 м/с2. Результат представить в единицах СИ.

Ракета движется относительно неподвижного наблюдателя со скоростью υ = 0,99с (с – скорость света в вакууме). Какое время пройдет по часам неподвижного наблюдателя, если по часам, движущимся вместе с ракетой, прошел один год? Как изменятся линейные размеры тел в ракете (по линии движения) для неподвижного наблюдателя? Как изменится для этого наблюдателя плотность вещества в ракете?

Задачи для самостоятельного решения Из двух пунктов, расположенных на расстоянии х0 = 90 м друг от друга одновременно начали движение два тела в одном направлении. Тело, движущееся из первого пункта имеет скорость υ1 = 10 м/с, а тело движущееся из второго пункта имеет скорость υ2 = 4 м/с. Через сколько времени первое тело догонит второе. Результат представить в единицах СИ. 

С какой наименьшей скоростью следует бросить тело под углом 56° к горизонту, чтобы оно перелетело через вертикальную стену высотой 5,6 м, если стена находится от точки бросания на расстоянии 5 м? Принять g = 10 м/с2. Результат представить в единицах СИ и округлить до десятых. 

Пропеллер самолета диаметром 3 м вращается при посадке с частотой 2000 мин–1. Посадочная скорость самолета относительно Земли равна 162 км/ч. Определить скорость точки на конце пропеллера при посадке. Результат представить в единицах СИ и округлить до целого числа.

Динамика. Законы Ньютона Первый закон Ньютонаутверждает, что существуют такие системы отсчета, в которых любое тело, не взаимодействующее с другими телами, движется равномерно и прямолинейно. Системы отсчета, существование которых постулирует этот закон, называются инерциальными. Этот закон можно сформулировать и так: «Всякое тело находится в состоянии покоя или равномерного прямолинейногодвижения, пока воздействие со стороны других тел не заставит его изменить это состояние».


Цепь переменного тока