Предел последовательности Производная функции

Скалярное поле и его характеристики. Опр. Скалярным полем (с.п.) наз. совокупность двух множеств: множества точек пространства M и множества чисел соответствующих этим точкам, которые определяются функцией U(M). Функция U(M)  наз. функцией поля. Если М DR2, то поле наз. плоским, если МR3 - пространственным. Поле наз. стационарным, если U(M) не зависит от времени. Точки поля с одинаковыми значениями функции образуют линии уровня на плоскости U(x,y) = C и поверхности уровня в пространстве U(x,y,z) = C С.п. можно представить как «слоистую» структуру, где значения поля постоянны в одном слое и меняются при переходе к соседнему слою. Различаются с.п. геометрической формой этих слоев и скоростью изменения значения при переходе от слоя к слою.

Предел последовательности

Задания для подготовки к практическому занятию

Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…). Таким образом, последовательность – это функция, заданная на множестве натуральных чисел. Задают последовательность чаще всего формулой общего члена. Например, если , то первые члены этой последовательности:

Понятие предела последовательности поясним пока на простых примерах:

Пример Показать, что последовательность  не имеет предела. Действительно, пусть а – предел xn.

- Последовательность натуральных чисел 1,2,3,4,5,…  неограниченно возрастает или стремится к плюс бесконечности: n®+¥. Поскольку n – натуральные числа и не могут быть отрицательными, знак «+» обычно опускают, подразумевая его «по умолчанию», и пишут n®¥.

- Последовательность  стремится к 0 при n®¥. Действительно, при очень больших значениях n значения  становятся очень

маленькими, так что, хотя члены этой последовательности не становятся равны 0, но отграничить их от 0 невозможно: начиная с некоторого номера все члены этой последовательности оказываются ближе к 0, чем любое заранее выбранное число e. Это легко понять, например если изобразить члены последовательности точками на числовой прямой.

Пишут:  (предел при n®¥ равен 0) или иногда .

- Сходным образом  и т.п. Вообще, если числитель дроби постоянен, а знаменатель неограниченно взрастает, то вся дробь стремится к 0.

При вычислении пределов последовательностей пользуются простыми их свойствами:

предел суммы равен сумме пределов (если последние существуют и конечны);

предел произведения равен произведению пределов (если последние существуют и конечны);

предел отношения равен отношению пределов (если последние существуют и конечны и предел знаменателя не равен 0).

Определение двойного интеграла.

Определение 1. Сумма , построенная в п. 1 называется интегральной суммой для функции f (x; y) на замкнутой области D.

Определение 2. Двойным интегралом от функции f (x;y) по замкнутой области D называется предел интегральной суммы  при условиях:

а) n → ∞ и  max ∆Si → 0 (стягиваясь в точку);

б) этот предел существует и не зависит ни от способа разбиения области D на части, ни от выбора на этих частях точек  

Обозначение двойного интеграла:

 

Теорема (достаточное условие существования двойного интеграла).

Если в замкнутой области DR² функция z = f (x;y) непрерывна, то двойной интеграл от этой функции по области D существует.

Вычислить  .

Предел функции

 Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.  Если предел функции при х®+¥ или х®-¥ существует и конечен, это

значит, что у графика функции имеется горизонтальная асимптота. Например, график функции  имеет асимптоту у=0 при х®±¥, а график функции y=arctgx – асимптоту  при х®+¥ и  при х®-¥.

  Предел функции f(x) в точке a: – это (говоря упрощенно) число, к которому стремится значение функции, если ее аргумент стремится к а. Если функция непрерывна в точке а, это значит, что ее предел в этой точке равен ее значению: . Поэтому первым действием при вычислении предела функции является подстановка значения аргумента. Если при этом получилось конкретное число или бесконечность – это и есть искомый предел.

Вычислить предел с помощью формулы Тейлора: .

Предел, непрерывность ФНП ПРИМЕР. Доказать по определению . Решение. Берем . Ищем  

Предел и непрерывность функции обной переменной Понятие предела функции  при , стремящемся к  (сокр. ), является основным понятием математического анализа. Оно характеризует поведение функции  вблизи точки , т.е. существование предела и его значение определяют локальное свойство .

ПРИМЕР Показать по определению . Теоремы о пределах о свойствах функций, имеющих конечные пределы

Существование предела частного функций  доказывается аналогично, если предварительно установить ограниченность функции  на некоторой окрестности . Односторонние пределы Второй замечательный предел

Различные определения непрерывности функции в точке Эквивалентность определений либо следует из эквивалентности определений конечного предела функции, либо может быть установлена.

Применение поверхностных интегралов. Так как поверхностные интегралы  1 и 2 рода сводятся к обычным двойным интегралам, то различные задачи, которые приводят к вычислению двойных интегралов, могут быть представлены через поверхностные интегралы. Рассмотрим несколько таких примеров.

а) Вычисление объема.

Пусть подынтегральная функция в ( 4 ) не зависит от z , тогда она определяет некоторую поверхность z = f(x,y) , а интеграл по D объем цилиндрического бруса, ограниченного этой поверхностью и областью D . Переход к поверхностному интегралу в этом случае дает следующее выражение для объема цилиндрического бруса V =  ( 14 )

Обобщение этой формулы на случай тела произвольной формы ограниченного поверхностью G имеет вид V = 1/3


Производная функции