Предел последовательности Производная функции

Поток векторного поля через поверхность. Пусть даны в.п. (M) = {P, Q, R} и двухсторонняя ориентированная поверхность G с нормальным вектором (M) = { }. Опр. Выберем на G бесконечно малую площадку S. Считаем, что во всех ее точках векторы  ,  имеют постоянное значение. Тогда скалярное произведение этих векторов и площади S наз. потоком вектора  через бесконечно малую площадку. Пусть  - векторное поле скоростей потока жидкости. Тогда *П это объем жидкости, протекающей через S за единицу времени в направлении внешней нормали к S, т.к. ||n - высота бруса жидкости, S - его основание. Если угол между векторами тупой и cos(^) < 0, то направления нормали и потока жидкости противоположны.

Задание 9. Разложить в ряд Лорана функцию  в окрестности особой точки .

Решение. Воспользуемся известным разложением:

.

Задание 10. Для функции  найти изолированные особые точки, провести их классификацию, вычислить вычеты относительно найденных точек.

a) ;

б) ;

в) .

Решение.

а). Особой точкой функции является точка . Чтобы определить вид особой точки разложим функцию в ряд Лорана по степеням :

Главная часть ряда Лорана содержит конечное число слагаемых, значит   - полюс. Порядок высшей отрицательной степени  определяет порядок полюса. Следовательно,  - полюс кратности 2. Вычет найдем, используя формулу , тогда .

б). Особой точкой функции является точка . Чтобы определить вид особой точки используем признак поведения функции в особой точке.

, значит  устранимая точка и, следовательно .

в). Особой точкой функции является точка . Чтобы определить вид особой точки используем разложение функции в ряд Лорана по степеням :

Главная часть ряда Лорана содержит бесконечное число слагаемых, значит  - существенно особая точка. Тогда , т.к. коэффициент при  равен нулю.

 Основные свойства тройного интеграла.

1) Пусть  непрерывна в объемной области D и , то

2) Если k постоянная величина, то

3) Если  и   непрерывны в области DR3, то

4) Если для любых  DR3 выполняется неравенство: , то

Векторный анализ. Криволинейные интегралы 1-ого рода. Задача: Кусочно-гладкая кривая линия L на плоскости соединяет точки А и В и определяется уравнением y = y(x) , [a,b] или x = x(t), y = y(t) (t1<t<t2). Вдоль кривой распределены массы с плотностью (M) для каждой точки М. Вычислим общую массу всей системы метод интегральной суммы. 1) Операция разбиения. Разделим кривую L на n участков некоторыми точками А0 = А, А1, . . . , Аn = В. Соединим соседние точки отрезками АiАi+1 длиной si и выделим на каждом из них некоторую точку Мi(). Приближенно масса отдельного отрезка равна mi = (Mi) si , Массу всех отрезков определяет интегральная сумма m(n) = (Mi) si


Производная функции