Предел последовательности Производная функции

Поток векторного поля через поверхность. Пусть даны в.п. (M) = {P, Q, R} и двухсторонняя ориентированная поверхность G с нормальным вектором (M) = { }. Опр. Выберем на G бесконечно малую площадку S. Считаем, что во всех ее точках векторы  ,  имеют постоянное значение. Тогда скалярное произведение этих векторов и площади S наз. потоком вектора  через бесконечно малую площадку. Пусть  - векторное поле скоростей потока жидкости. Тогда *П это объем жидкости, протекающей через S за единицу времени в направлении внешней нормали к S, т.к. ||n - высота бруса жидкости, S - его основание. Если угол между векторами тупой и cos(^) < 0, то направления нормали и потока жидкости противоположны.

Задание 2. Вычислить значение функции  в точке , ответ представить в алгебраической форме комплексного числа:

а) ;

б) .

Решение.

а)

б) По определению .

,

Задание 3. Указать область дифференцируемости функции  и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Решение.

Выделим действительную и мнимую часть функции :

Таким образом, получим:

Найдем частные производные  и выясним, в окрестности каких точек они существуют и непрерывны, а также в каких точках плоскости выполняются условия Коши-Римана:

.

,

,

т.е.  для любых действитедбных х и у, и эти частные производные непрерывны во всей плоскости .

,

,

т.е.  для любых действитедьных х и у, и эти частные производные непрерывны во всей плоскости .

Так как условия Коши-Римана выполняются для любой пары действительных чисел  и частные производные  существуют и непрерывны в окрестности любой точки , то производная  существует в любой точке  комплексной плоскости С.

Найдем эту производную:

Итак, .

Действительная часть производной:

,

мнимая часть производной:

.

 Некоторые приложения тройного интеграла.

1) Объем тела, занимающего область DR3:

2) Если плотность тела , то масса тела, занимающего область DR3:

3) Координаты центра тяжести тела, занимающего область DR3:

Если тело однородное, т.е. = Const, то координаты его центра тяжести:

Векторный анализ. Криволинейные интегралы 1-ого рода. Задача: Кусочно-гладкая кривая линия L на плоскости соединяет точки А и В и определяется уравнением y = y(x) , [a,b] или x = x(t), y = y(t) (t1<t<t2). Вдоль кривой распределены массы с плотностью (M) для каждой точки М. Вычислим общую массу всей системы метод интегральной суммы. 1) Операция разбиения. Разделим кривую L на n участков некоторыми точками А0 = А, А1, . . . , Аn = В. Соединим соседние точки отрезками АiАi+1 длиной si и выделим на каждом из них некоторую точку Мi(). Приближенно масса отдельного отрезка равна mi = (Mi) si , Массу всех отрезков определяет интегральная сумма m(n) = (Mi) si


Производная функции