Тройной интеграл Объём цилиндрического тела

Понятие матриц (матрица-строка, матрица-столбец, квадратная, единичная, диагональная). Равенство матриц. Действия над матрицами (умножение матрицы на число, сложение, вычитание, умножение матриц, транспонирование матриц). Определители 2-го, 3-го и n-го порядка. Минор и алгеброическое дополнение. Обратная матрица и ее вычисление. 3 случая решения системы. Элементарные преобразования над системой. Матричная запись системы линейных уравнений. Решение системы методом Гаусса, с помощью обратной матрицы, по формулам Крамера.

Решение примерного варианта контрольной работы №2

Задача 3. Вычислить работу силы  при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Решение.

Для вычисления работы используем криволинейный интеграл II рода (формула (13)): .

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

.

Для заданной кривой получаем:

Таким образом, для нахождения работы нужно вычислить определенный интеграл: Введение в математический анализ. Числовая последовательность.

  Сделаем замену переменной в определенном интеграле:

, ,

тогда получим: .

 Используем прием «подведение под знак дифференциала части подинтегральной функции»:

Ответ:  ед. работы.

Задача 4. Задан радиус-вектор движущейся точки:

 . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Решение.

Вектор-функция задана в виде: .

Найдем первые и вторые производные ее проекций x(t), y(t) z(t) по аргументу t:

Найдем векторы скорости и ускорения движения точки по формулам (14) и (15):

.

Через 2 минуты после начала движения векторы скорости и ускорения будут:

, .

Ответы: , .

ЗАДАЧА (наилучшего локального приближения)

Пусть произвольная функция с "хорошими" свойствами   рассматривается на какой-либо окрестности точки . Найти многочлен  заданной степени  так, чтобы отклонение  на  было наименьшим.

РЕШЕНИЕ. Ищем  в виде многочлена по степеням разности .

Тогда естественно потребовать выполнение соотношений

  при , т.е. ;

  при , т.е.

;

  при , т.е.

.

Аналогично  и далее .

Задача.  Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0. Требуется:

найти поток поля  через плоскость треугольника АВС где А, В, и С – точки пересечения плоскости d с координатными осями, в направлении нормали плоскости, ориентированной «от начала координат»; построить чертеж пирамиды ОАВС, где О – начало координат; используя формулу Остроградского-Гаусса, вычислить поток поля  через полную поверхность пирамиды ОАВС в направлении внешней нормали.

Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

ПРИМЕР Подвести под дифференциал .

РЕШЕНИЕ. Последовательно проведем следующие преобразования: . Воспользуемся формулой  при  и получим окончательно . Но тогда .

Интегрирование тригонометрических функций вида

Интегрирование простейших тригонометрических функций. При интегрировании выражений вида  (где m и n – натуральные числа) рекомендуется принимать во внимание следующие правила.

1) Если обе степени четные, то применяются формулы «понижения степени»: .

2) Предположим, что какое-либо из чисел m и n – нечетное. Например, n=2k+1. В этом случае одну из степеней функции cosx «отщепляют», чтобы внести под знак дифференциала (т.к. ). В оставшемся выражении  с помощьюосновного тригонометрического тождества  выражают через  (). После преобразования подынтегрального выражения (и с учетом свойства линейности) получается алгебраическая сумма интегралов вида , каждый из которых можно найти с помощью формулы 2) из таблицы 2: .


Решение типовых задач