Предел последовательности Производная функции

Скалярное поле и его характеристики. Опр. Скалярным полем (с.п.) наз. совокупность двух множеств: множества точек пространства M и множества чисел соответствующих этим точкам, которые определяются функцией U(M). Функция U(M)  наз. функцией поля. Если М DR2, то поле наз. плоским, если МR3 - пространственным. Поле наз. стационарным, если U(M) не зависит от времени. Точки поля с одинаковыми значениями функции образуют линии уровня на плоскости U(x,y) = C и поверхности уровня в пространстве U(x,y,z) = C С.п. можно представить как «слоистую» структуру, где значения поля постоянны в одном слое и меняются при переходе к соседнему слою. Различаются с.п. геометрической формой этих слоев и скоростью изменения значения при переходе от слоя к слою.

Производная функции

Задания для подготовки к практическому занятию

Займемся непосредственно вычислением производных, для чего используем сводную таблицу формул дифференцирования. Вторая часть таблицы, в которой приведены производные основных элементарных функций, записана для сложных функций вида f(u), u=u(x). При этом следует помнить, что .

Примеры. Дифференциал функции. Пусть функция y = f(x) имеет производную в точке х:

Вычислить производные функций:

а); б); в); г)y=sin2x; д)y=ln(x2+1)

Решение:

 а)

 .

 б)

 .

 в) .

 г) .

 д) .

 Производная широко применяется в исследовании функции и при решении связанных с этим практических задач.

Геометрический смысл метода Эйлера: Интегральная кривая заменяется ломаной, звенья которой имеют постоянную горизонтальную проекцию h. Первое звено касается искомой интегральной кривой в  

 В том числе дифференцирование применяют для вычисления пределов, используя так называемое правило Лопиталя:

Предел отношения функций, представляющий неопределенность вида  или , равен пределу отношения их производных: 

Теорема (о среднем значении двойного интеграла).

Если функция z = f (x;y) непрерывна в замкнутой области D, то внутри области D найдется, хотя бы одна точка , в которой выполняется равенство:

 ,

где   – площадь области D.

Доказательство: По свойству непрерывной функции в замкнутой области, функция z = f (x;y) в области D достигает своих наименьшего (m) и наибольшего (M) значений.

Значит: m ≤ f (x;y) ≤ M для .

Тогда для всех  можно записать ,

где

Умножая последнее неравенство на ∆Si > 0, получим:

 

Суммируем все n неравенств 

  

Вынесем m и М за знаки сумм (как постоянные величины) и перейдем к пределам при n → ∞ и max ∆Si → 0 (стягиваясь в точку):

 

Ссылаемся на определение двойного интеграла и получаем:

 

По свойству непрерывной в замкнутой области функции, функция z = f(x;y) в области D принимает все промежуточные значения между наименьшим (m) и наибольшим (М) значениями.

Следовательно, существует точка , в которой:

 

Теорема доказана.

Производная и дифференциал. Исследование функций.

Неопределенный интеграл. Табличное интегрирование Замена переменной; интегрирование по частям Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций Для того, чтобы проинтегрировать рациональную дробь (многочлен в числителе, многочлен в знаменателе), обычно нужно ее упростить (как вы помните, это значит – представить в виде суммы).

Интегрирование тригонометрических выражений С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить. Способов такого преобразования, как и способов замены переменной в тригонометрическом интеграле обычно много, но для некоторых типов интегралов известны стандартные действия, приводящие к ответу наиболее коротким путем. Их описанию и посвящен рассматриваемый параграф лекций. На наш взгляд, приведенный там материал достаточно прост и показателен, сделаем только два замечания

Применение поверхностных интегралов. Так как поверхностные интегралы  1 и 2 рода сводятся к обычным двойным интегралам, то различные задачи, которые приводят к вычислению двойных интегралов, могут быть представлены через поверхностные интегралы. Рассмотрим несколько таких примеров.

а) Вычисление объема.

Пусть подынтегральная функция в ( 4 ) не зависит от z , тогда она определяет некоторую поверхность z = f(x,y) , а интеграл по D объем цилиндрического бруса, ограниченного этой поверхностью и областью D . Переход к поверхностному интегралу в этом случае дает следующее выражение для объема цилиндрического бруса V =  ( 14 )

Обобщение этой формулы на случай тела произвольной формы ограниченного поверхностью G имеет вид V = 1/3


Производная функции