Современные интерьеры зданий Эмоциональный потенциал архитектуры О развитии пространства О масштабе и образе Форма, материал, цвет Творчество в проектировании О компонентах интерьера

Эмоциональный потенциал архитектуры

Известный психолог Л. Выгодский доказал закон эстетической реакции придя к выводу, что она заключает в себе эффект, развивающийся в двух направлениях, который в завершающей точке как бы в коротком замыкании находит свое уничтожение. Этот процесс он охарактеризовал как аристотелевский «катарсис», подтвердив, что «через духовное преодоление глубочайшей боли возникает чувство триумфа, не имеющего себе равных».

Возможность средствами архитектуры прогнозировать отвлеченную потребность и одновременно врожденную реакцию тревоги, напряжения, ожидания, стремления познать больше, становится особой силой, эмоциональным потенциалом произведения архитектуры. Удивительно то, что даже в случае неразвитых духовных потребностей человека и отсутствия чувства красоты у него может возникнуть эмоция как результат потребности, рожденной самим произведением архитектуры.

Характерно то, что через эту доступную общечеловеческому пониманию значимую информацию мы воспринимаем архитектуру как социальное явление, определяющее направленность эмоций, В классической Греции архитектура не подавляет нас ни размерами, ни тяжестью, ни величием. В гигантских сооружения! римских колоний прочитываются «величие Рима» и рабская подчиненность покоренных народов. Величайший памятник русской архитектуры колокольня Ивана Великого, не подавляя смотрящего на него, вселяет оптимистическую гордость за свой народ, за человечество. В отличие от других видов искусств архитектура теснее связана с социальными требованиями общества, его идеями и материально-техническими возможностями. На протяжении истории отрабатывались типы сооружений, воплощая сложный комплекс социальных идей, культуры мировоззрения.

Центр по изучению окружающей среды под Нью-Йорком. План; общин вид, вход: интерьер

Призматоид - многогранник, ограниченный двумя многоугольниками, расположенными в параллельных плоскостях (они являются его основаниями); его боковые грани представляют собой треугольники и трапеции, вершины которых являются и вершинами   многоугольников оснований

Законы Кирхгофа в операторной форме